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Abstract 
COVID-19 fundamentally changed the world in a matter of months. To understand how it was 
impacting life in the United States, we fielded a non-probability survey in all 50 states 
concerning people's attitudes, beliefs, and behaviors, designed to be representative at the state 
level. Here, we evaluate the generalizability of this study by assessing the representativeness 
and convergent validity of our estimates. First, we evaluate the representativeness of the 
sample by comparing it to baseline estimates and auditing the size of the weights we use to 
reduce bias. We find our sample is diverse and most weights are below levels of concern with 
the exception of Hispanic respondents. Second, we assess the convergent validity of our survey 
by evaluating how our estimates of attitudes, behaviors, and opinions compare to estimates 
from other surveys and administrative data. Third, we perform a direct comparison of our results 
to the Kaiser Family Foundation’s probability-based COVID-19 Vaccine Monitor. Overall, our 
estimates deviate from others by 1%-7% with the larger differences stemming from states with 
small populations and few other data sources and estimates from items with differing question 
wording or response choices. Here, we put forward a standard for evaluating the 
representativeness of surveys, non-probability or otherwise.  
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leadership in determining the methods, questionnaire design, and analytic directions. This research has 
been supported by the National Science Foundation (SES-2029292, SES-2029792), Knight Foundation, 
Russell Sage Foundation, Peter G. Peterson Foundation, and Amazon 
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Introduction  
For all the focus on big data and new computational methods of measurement, the ubiquity of 
the internet and computing have also led to a revolution in survey research. Anyone with an 
internet connection and survey software can field a large survey for less than a thousand dollars 
using crowd work platforms like Mechanical Turk and Prolific, online advertising with Facebook 
or Twitter, or sample aggregation companies like PureSpectrum or Lucid (Berinsky, Huber, and 
Lenz 2012; Coppock and McClellan 2019; Peer et al. 2017). As a result, non-probability online 
surveys have become a widely used tool for public opinion research.  
 A central question concerns whether these data sources can provide generalizable 
inferences about a population. Probability surveys are considered the gold standard because 
they allow one to clearly estimate sampling error based on statistical theory. This is not possible 
with non-probability surveys because they violate key assumptions of this theory. There is a 
burgeoning literature that assesses the extent to which non-probability surveys arrive at 
estimates close to those of probability surveys (Ansolabehere and Schaffner 2014; Baker et al. 
2010, 2013; Bradley et al. 2021; Kennedy et al. 2016; MacInnis et al. 2018).2 While these are 
useful, generalizing from their results is difficult due to substantial variation among different 
probability samples (e.g. varying levels of non-response) and non-probability samples (e.g., 
various filters, weighting) (Kennedy et al. 2016). Our goal is not to offer a definitive statement of 
whether non-probability surveys are “generally” suitable substitutes. Instead, we seek to assess 
the generalizability of our particular large-scale, non-probability survey designed in a 
circumstance where probability approaches were logically and financially infeasible. 
 A first step in data assessment requires asking why the researchers collected the data. 
For example, with survey data, researchers recognize that probability methods often prove 
infeasible with hard-to-reach-populations (i.e., groups that have low prevalence and/or high 
rates of non-response). For that reason, researchers employ different methods for such 
populations (Tourangeau 2014). Alternatively, with experimental data, the goal is to generalize a 
causal inference, meaning that the demographic representativeness of the sample only matters 
if the inference is moderated by misrepresented groups and the misrepresentation goes 
unmodeled (Druckman 2022). Here, we focus on a distinct circumstance: data collected to 
capture dynamics over-time and across space. Such data introduces the challenge that some of 
the spatial units are hard-to-read. Moreover, frequent over-time measures across space quickly 
become extraordinarily expensive. Yet, given that many social, political, and economic 
phenomena occur over-time and across-space (e.g., political campaigns, recessions, social 
movements), such data are often vital.  

Perhaps no event made this clearer than the emergence of Sars-Cov-2 in late 2019 
(COVID-19). COVID-19’s rapid spread across the world in early 2020 required immediate 
scientific action to study its spread, model human behavior, and understand its impact on public 
policy. In the United States, a comprehensive approach required accounting for differential state 
action (given the federalized nature of the response) over time (given the non-linear evolution of 
the pandemic). This meant gathering data from some hard-to-reach groups (e.g., a sufficient 
sample from small states, given varying non-response rates) and many large data collections 

 
2 Non-probability sampling is a sampling method in which not all members of the population have an 
equal chance of participating in the study 
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over-time. While monthly probability samples from each state may be an ideal, logistical and 
resource realities made that simply infeasible. While we do not minimize the value of other data 
collection approaches with regard to COVID-19, data across space and over time have inherent 
value as well. 

We collected such data over-time (21 waves thus far) and across space (state-level) 
using non-probability samples. We did so given the pressing need and the resource realities. 
Our efforts -- the COVID States Project -- began in April 20203 using the vendor PureSpectrum. 
We sought to understand the national and state-level changes in American society during the 
pandemic, over time. Based on these data, we wrote reports and policy briefs evaluating the 
impact of policy actions, changes in scientific knowledge, and world events to inform the public 
and guide policy makers (available at covidstates.org). We have also begun publishing our work 
in peer reviewed outlets (Druckman et al. 2021; Perlis, Ognyanova, et al. 2021; Perlis, 
Santillana, et al. 2021).  An essential task then is to address whether our approach provides 
sound estimates given their purpose (e.g., point estimates in states, over time trends). As 
intimated, some question whether non-probability based inferences are reasonable (Baker et al. 
2013; Bradley et al. 2021) while others offer evidence to the contrary (Enns and Rothschild 
2021). The reality, as mentioned, is that reasonableness varies based on goals, specific studies, 
and the evaluative techniques employed (Kennedy et al. 2016). 

In what follows, we seek to evaluate the generalizability of our survey results. We 
believe our approach is essential since there continue to be insufficient standards and reporting 
of auditable and validated results. Our bottom line is: 1) evaluations of non-probability surveys 
requires assessment of the sample representativeness and external validity relative to 
administrative and probability survey baselines, and 2) our own effort fared quite well on these 
criteria, suggesting that when needed, non-probability approaches to collect data over-time and 
across-states are feasible. Before turning to a more detailed background of our specific survey 
effort and our validation efforts, we offer a brief preview. 

Validating non-probability surveys 
For the COVID States Project, we sought to create estimates of opinions, beliefs, and behaviors 
representative for each state over time. This fine-grained polling is meant to allow policy 
makers, public health officials, and the public to make the highest-quality decisions based on 
the most relevant data for them. To that end, we recruited tens of thousands of participants from 
an online subject pool from around the United States to participate in surveys. These surveys 
typically occurred every 4-6 weeks. We maintained a core set of questions while changing some 
content as conditions changed. Our question is how generalizable are estimates made from the 
data we have collected?  

The first way we assess generalizability is by examining the representativeness of our 
sample. For example, does the sample look like the population on key measures of interest like 
race and education? The degree of unrepresentativeness can provide us with insight into the 
overall generalizability of the survey while individual dimensions of unrepresentativeness, say 
under-sampling conservatives, can provide us with theoretical explanations for why estimates 
may be more or less generalizable and in what directions our estimates may biased.  

 
 

https://www.zotero.org/google-docs/?LmwPUn
https://www.zotero.org/google-docs/?LmwPUn
https://www.zotero.org/google-docs/?KhlOfU
https://www.zotero.org/google-docs/?KhlOfU
https://www.zotero.org/google-docs/?C1inCR
https://www.zotero.org/google-docs/?C1inCR
https://www.zotero.org/google-docs/?QZTgjL
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The fundamental limit to representativeness is that we cannot compare a sample to the 
population along all possible dimensions. We have to pick a few points of comparison. In this 
case, there are generally established norms for which demographics to use in the United States 
for surveys, especially surveys about political issues: race, education, gender, income, age, and 
political ideology. We present those here. However, there is always the potential for unobserved 
differences making a sample unrepresentative.  

The second way we assess generalizability is through convergent validity: comparing 
our estimates to those from other sources. For example, we can compare how many people 
report getting a vaccine for COVID-19 in our survey to government-provided counts of 
vaccination in the population. No source is perfect. In the validation, we focus on administrative 
data where it exists and use the Societal Experts Action Network (SEAN) COVID-19 Survey 
Archive to identify surveys with comparable estimates. SEAN only includes probability-based 
surveys; hence our survey-to-survey comparisons are always against probability-based surveys. 

The central challenge for using convergent validity to assess survey quality is that the 
most of the estimates we care about are those without comparable baselines. (Otherwise why 
do a survey in the first place?). Thus, our goal is not just to validate whatever questions we can, 
but to provide indirect evidence for the validity of the items that have no comparisons. In the 
Covid States survey, the primary topics are the pandemic and the medical and political 
response to it. Thus, for this study, we focus on validating two sets of comparison questions - 
political beliefs and behaviors and health-related beliefs and behaviors. 

Validation Roadmap 

 In what follows, we first describe the process by which we recruited subjects. Our goal 
was to develop samples of each state within the United States that were representative by age, 
gender, and race. (While we use state-level comparisons where possible in our tests of 
convergent validity, given the lack of state-level surveys, most of the comparisons we present 
are at the national level.) We report the demographic characteristics of our overall sample, our 
weighting procedure, and the distribution of weights from each wave. We then report on 
baseline comparisons for a variety of political and pandemic-related items asked in our survey, 
on other surveys, and collected by other methods. Lastly, we report on an in-depth comparison 
of our estimates against those from the Kaiser Family Foundation’s probability-based poll. We 
examine top-line results for behaviors and attitudes as well as differences among subgroups like 
age, race, and gender. 
 

Sample Methodology: 

Participant Recruitment 

We recruited respondents through PureSpectrum, a self-described sample automation platform 
which aggregates and deduplicates respondents from multiple online survey research firms 
(“suppliers”). Researchers set a price, which can be adjusted at any time, and suppliers 
determine algorithmically how many respondents to send depending on survey length and 
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completion rate, expected profit margin, and capacity to meet any demographic quotas the 
researcher specifies. The cost and rate of respondents fluctuates in response to supply (e.g., 
more respondents appear to log in on weekends) and demand (e.g., number of surveys to 
choose from). Depending on the supplier, panel members either receive an email notification or 
are presented with a queue of potential surveys to take when they log on a website or mobile 
app.  Some suppliers offer respondents cash or points redeemable for cash or coupons, while 
others rely on volunteers or online gamers seeking in-game rewards. In order to minimize self-
selection bias, we chose not to reveal the topic of the survey until respondents had passed the 
screening questions and arrived at our questionnaire (hosted externally in Qualtrics). 

To facilitate state-by-state comparisons, we run 51 parallel surveys each wave in each 
state and the District of Columbia. This allowed us to set demographic quotas in each state 
based on census data for race, gender, and age. While in large states we found it easy to attain 
our target sample size of 500 respondents for as little as $0.60 per complete, we were forced to 
pay more in smaller states where the suppliers’ pools of panels were smaller to begin with.4 
Because supplier algorithms tended to be averse to difficult-to-fill quotas, we left our 
demographic quotas in the smallest states unnested, while double or triple nesting gender, age, 
and race in larger states. For the difficult states, PureSpectrum engaged two additional 
suppliers which had greater coverage in those states but charged a much higher rate. We also 
created a shortened version of the survey, excluding any questions which we did not plan to 
analyze at the state level, and directed the majority of our small state respondents to that 
version, since respondents are more likely to begin a survey if the supplier reports it has a 
shorter average completion time. Finally, we ran a nationwide minority augment survey to boost 
the number of Black, Hispanic, and Asian American respondents for subgroup analysis, as well 
as surveys targeting return respondents who had participated in prior waves. 

Table 1 lists the dates, sample size, median survey duration, and sample type of each 
wave. We use median rather than mean duration because respondents will occasionally wander 
away from a survey and return hours later, skewing the distribution. Note that three of our 
surveys were small nationally representative surveys with stricter quotas, and wave 15 was a 
special survey following the January 6, 2021 U.S. Capitol insurrection which we limited to 
respondents whom we had previously surveyed in November. All other state surveys have 
between 18,000 and 26,000 respondents, with 400-500 respondents in the vast majority of 
states (N=400 results in a 95% confidence interval of ±4.9 which is often sufficient for our 
purposes). A handful of low-population states in most waves had sample sizes falling below 350 
and were footnoted in our reports accordingly. With a median survey duration of 17-23 minutes 
across waves, the average cost per completed interview was between $1-$2 in all but the most 
difficult states. 
 
 

Table 1. Waves of the COVID States Survey 

 
4 In fact, the closer we got to the 2020 election, the more we needed to pay, likely due in part to suppliers 
cutting back on recruitment during the pandemic and increased competition with other researchers 
launching election season surveys. 
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Wave Start Date End Date N Median 
Duration 
(minutes) 

Sample 
Type 

1 4/16/20 4/30/20 19,489 18 State 

2 5/2/20 5/15/20 20,305 19 State 

3 5/16/20 6/1/20 18,103 21 State 

4 6/5/20 6/12/20 2,090 21 National 

5 6/12/20 6/28/20 22,470 17 State 

6 7/3/20 7/10/20 1,561 20 National 

7 7/10/20 7/27/20 19,058 19 State 

8 7/31/20 8/7/20 2,029 17 National 

9 8/7/20 8/26/20 21,196 20 State 

10 9/4/20 9/28/20 20,315 20 State 

11 10/2/20 10/23/20 18,002 20 State 

12 10/23/20 11/4/20 12,540 19 State 

13 11/3/20 12/1/20 24,017 22 State 

14 12/16/20 1/11/21 25,640 20 State 

15 1/13/21 1/20/21 2,044 19 National5 

16 2/5/21 3/1/21 21,500 23 State 

17 4/1/21 5/3/21 21,733 21 State 

Survey Content 

Our research aim was to track public opinion and behavior in the United States during the 
pandemic. After initial screening questions and household demographics, we asked whether the 
respondent had been diagnosed with COVID-19. Those who responded “yes” were asked a 
series of questions about their symptoms and the duration of the illness.  We also examined the 
spread of the virus within households by asking who in the household has been diagnosed with 
COVID-19 and the relationships between household members including who shares a bedroom. 
Thus, by fielding a large sample survey at low cost, we are able not only to gather detailed 
information on a diverse samples of the population,6 but to also provide epidemiological tracking 

 
5 Sample limited to respondents who participated in Wave 13. 
6 According to the Centers for Disease Control, only 10.1% of Americans had been diagnosed with 
COVID by April 15, 2021 which coincided with the midpoint of Wave 17 where we found an 11.1% 
positivity rate. 
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of households over time. All respondents were asked about access to testing, interactions with 
contact tracers, pandemic-induced hardships and concerns, and evaluation of state and federal 
pandemic responses. We also measured knowledge and exposure to misinformation about the 
virus, news sources, adherence to social distancing and self-isolation guidelines, vaccination 
status and attitudes. Finally, to understand the impact of the disease itself and the resulting 
lockdowns on public health, we asked about mood, loneliness, and social support, including the 
PHQ9, a 9-item diagnostic questionnaire used in primary care settings to screen for depression 
(Kroenke and Spitzer 2002). 
 Several sections of the survey focused not on COVID-19 but on the political events that 
unfolded during 2020. With the outbreak of widespread protests in the summer of 2020, we 
added a special section aimed at protesters and collected unprecedented data on protestors, a 
small subset of the population that would be hard-to-reach using alternative sampling strategies. 
We tracked support of political candidates throughout the fall, and following the November 2020 
general election, we added a Spanish-language version of the survey to better understand why 
large numbers of Hispanics voted for Donald Trump. In response to record-setting firearms 
purchases during the pandemic, we added a supplementary section for gun-buyers to 
understand their motivations. We also launched two special surveys for return respondents 
following unexpected news events to examine changes in attitudes. Following the Capitol 
Insurrection of January 6, 2021, we recruited 2,044 respondents who had participated in the 
November post-election wave to examine how well their prior attitudes toward the legitimacy of 
the election and acceptability of political violence predicted their reaction to the insurrection. 
During the FDA’s two-week pause of the Johnson & Johnson vaccine in April 2021, we recruited 
respondents who had taken the survey just prior to the pause to take the survey again in order 
to measure within-respondent changes in willingness to get vaccinated.  

At the conclusion of the survey, we asked respondents to supply their Twitter handle if 
they are willing, following common approaches (Hughes et al. 2021). Respondent-supplied 
handles were filtered for quality such as removing email addresses, entries longer than the 
maximum handle length, or entries that use characters that are not allowed in Twitter handles; 
before being stored separately for timeline collection. We also offered an additional monetary 
incentive for respondents who were willing to install a browser extension we designed for both 
conducting targeted audits, passive monitoring, and collecting data on what websites know 
about people, such as Google account activity or ad preferences. The results of research 
related to the browser extension will be detailed elsewhere.  

Data Analysis 

Data Weighting Procedure 
We employ two types of weighting schemes in our analyses. In both, we use raking with the 
“survey” package in R (Lumley 2020) which is a form of calibration adjustment across multiple 
weights (Baker et al. 2013). For state-by-state comparisons, we reweight respondents according 
to 2019 American Community Survey’s estimates for gender, age, race, education, and 
urbanicity within each state. Weights are truncated so that, in effect, no respondent can be 

https://www.zotero.org/google-docs/?5yo677
https://www.zotero.org/google-docs/?E6pBA4
https://www.zotero.org/google-docs/?fCqkw6
https://www.zotero.org/google-docs/?LfPJBT
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counted more than five times in the reweighted data.7  For analyses at the national level, we re-
weight respondents according to interlocked gender-age-race subgroups, as well as education, 
urbanicity, and region. As detailed below, Hispanics, men, less-educated and older respondents 
were more likely to be underrepresented in the sample and thus receive high weights. Region 
and urbanicity required little adjustment. 
 Our weighting approach is relatively straightforward, especially when compared to a 
variety of model-based alternatives (Valliant 2020; Yang, Kim, and Song 2020). This is by 
design, as our goal here is to examine how our results compare to external estimates using 
conventional methods. Moreover, as Valiant (2020) discusses, all weighting procedures make 
similar (strong) assumptions regarding the relationship between the sample and target 
populations. If such assumptions are violated, more elaborate weighting schemes will not by 
themselves represent a solution. If such assumptions are met, as the sample size increases, 
different weighting schemes will likely converge on similar answers. The intuition behind our 
approach is that when the extent to which such assumptions may be violated is unclear (as is 
the case here, and in most current survey contexts) the optimal strategy is to triangulate across 
multiple surveys and ground-truth benchmarks (Bradley et al. 2021). 

Data Filtering 
One of the biggest challenges of online panels is preventing inattentive respondents 

from contaming the sample. Since respondents are paid by the survey and not by the question 
or by the minute, there are adverse incentives for respondents to speed through without 
reading—skipping questions, clicking random responses, or employing assistive technology 
(bots, autocomplete, etc.). This problem becomes particularly acute when studying rare 
phenomena. For instance, if a question asks “Have you attended a protest in the past month?” 
half of all respondents who click randomly will say “Yes,” thus inflating estimates of protest 
attendance, perhaps substantially. Furthermore, since researchers often pay more for hard-to-
reach subpopulations, there is a risk that savvy, experienced respondents will lie about their 
demographics and location in order to qualify for a high-paying survey.8 PureSpectrum takes 
steps to mitigate some of this risk; for instance, when respondents report their zip code, if the 
location of their IP address is not in the state containing that zip code, they are flagged for 
follow-up. Respondents cannot re-enter the same survey twice within a given wave, regardless 
of whether they initially qualify. Finally, PureSpectrum uses respondents' self-reported 
demographic traits to deduplicate respondents who are signed up for multiple suppliers to 
prevent them from taking the survey twice and also blacklists respondents who change their 
answers to certain demographic questions from one survey to the next. 

In addition to PureSpectrum’s built-in quality filters, we implemented several additional 
steps to improve data quality. Our survey contained two attention check questions (e.g., “Just so 
we know you are still with us and paying attention, please select "never" below”), a pledge to 
take the survey seriously to encourage more thoughtful responses, a CAPTCHA test to filter out 

 
7 To be precise, weights are trimmed above at either 5 or the 98th percentile, whichever is lower, and 
below at either 0.2 or the 2nd percentile, whichever is higher. For national weights, we trim at the 1st and 
99th percentiles, resulting in a maximum weight between 5 and 6 for most waves.  
8 There is also a risk of respondents for low-income countries using a VPN to pretend to be in the United 
States or farming out the survey via Mturk to other workers (Kennedy et al. 2020). 

https://www.zotero.org/google-docs/?3xsES7
https://www.zotero.org/google-docs/?Vj42zP
https://www.zotero.org/google-docs/?jig2v4
https://www.zotero.org/google-docs/?3isZ4C
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bots, and a speeder check to disqualify anyone finishing the survey implausibly fast. After 
disqualifying respondents who failed any of those filters, we then set up a series of “flags,” 
tripping any two of which would result in disqualification: reporting more than 10 household 
members, claiming to have engaged in more than five activities outside the home in the past 24-
hours (from a list of 13), professing to be a follower of more than two religions, being employed 
in multiple high-COVID-risk professions, straightlining (choosing the nth option each time) on 
more than 14 consecutive questions,9 and reporting opposite ends of the political spectrum for 
party and ideology. The intuition behind the flags is that while the sample may include 
respondents who are half-Jewish, half-Muslim or who work part-time in hospital and part-time in 
a grocery store, the chances that respondent meets two or more of these rare conditions is 
exceedinly slim compared to the chances that they are clicking randomly. The numeric cutoffs 
for the flags were determined in the initial waves by comparing the rate of flag-tripping for 
individuals who failed an attention or speed check to the rest of the pool, in order to filter out 
respondents whose answers most resembled the attention check violators.   

Finally, beginning in the 10th wave, we added the following text entry question: “Other 
than the state you live in, in what other U.S. state do you have the most friends and family 
members?” Respondents who gave an acceptable response passed the filter, those giving an 
irrelevant response were disqualified, and those who skipped the question or gave a response 
we did not anticipate were added to the aforementioned list of flagged respondents, such that 
they needed to fail a second flag filter to be disqualified. Lists of acceptable and irrelevant 
responses were developed by hand-coding the initial waves of respondents (any term relating to 
geography or indicating “N/A”, “don’t know,” “no friends,” etc. were deemed acceptable), as well 
as using fuzzy matching to state names to allow for misspellings. This filter was implemented in 
response to concerns over answers to other free response questions, but since it was not 
included in the first 10 waves, we do not use it in longitudinal analyses that include them. We 
highly recommend that researchers implement a filter like this from the get-go when using online 
samples, and that they choose a question with a limited number of plausible responses (e.g., 
state names). 

Results 

Demographic Representativeness 

A survey is representative when it perfectly resembles the population on all measured and 
unmeasured characteristics. In practice, no sample (non-probability or otherwise) perfectly 
resembles the population and we use weighting to reduce the biases in our estimates stemming 
from this imperfection. In this section, we examine the underlying, unweighted sample to identify 
potential areas of under-coverage - where the sample may be too small for drawing inferences. 
We also investigate potential limits of our weighting procedure by looking at the demographic 
groups where we had to trim our weights. The results suggest that our sample hews closely to 
the American population but points to potential under-representation of Hispanics and those 
with less than a high school degree.  

 
9 Also, having a straightline average greater than 1.3 consecutive questions.  
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A word of caution: this assessment is based on the entire sample across all waves and 
provides a general overview of the dimensions of sample bias in the survey. However, these 
results should not be understood as validating any particular subsample including for any 
particular state for any particular wave. Subsequent studies on subsamples will involve their 
own representativeness checks.  

Sample Diversity  
Although we sampled by state-level race, gender, and age; the COVID States survey largely 
mirrored the population of the United States on these and other dimensions. In Table 2, we 
show what proportion of the sample matches each key characteristic we measured and could 
compare to the population at large as measured by either the census or probability-based 
samples. Given that we conducted multiple waves with some participants providing data 
multiple times, Table 2 is broken down for all data, all unique participants, and those who 
provided data more than once. The comparisons allow us to document any potential panel bias 
in our subsequent results. These are aggregate statistics across all waves and states, providing 
a general sense of any sampling bias. There is likely to be some degree of heterogeneity in 
these sample biases at the state level.  
 

 
Table 2: Unweighted Demographics of Participants 

 All Subjects, All 
Waves 

(unweighted) 

Unique 
Participants 
(unweighted) 

Repeat 
Participants 

(unweighted) 

U.S. Population 

Age     
     18-24 12.5 16.0 6.2 12+ 

     25-34 19.9 23.3 14.9 18+ 
     35-44 20.5 22.4 18.8 16+ 
     45-55 15.1 14.5 16.9 16+ 
     55-65 15.1 12.2 19.6 17+ 
     65+ 17.0 11.6 23.7 21+ 
Income     
     < $25,000 23.7 25.4 18.5 17+ 
     $25 - $49,999 24.9 23.4 26.1 20+ 
     $50 - $74,999 16.6 16.1 19.2 16+ 
     $75 - $99,999 13.7 13.1 14.7 12+ 
     > $100k 21.9 22.2 21.5 34+ 
Education     
     Less than HS 3.0 3.5 2.0 10+ 
     HS Grad 21.7 22.1 20.6 28+ 
     Some College 33.7 33.8 33.8 26+ 
     Bachelor Degree 25.9 24.8 27.7 22+ 
     Graduate Degree 15.7 15.9 15.7 3.5+ 
Gender     
     Male 32.9 32.7 31.8 49+ 
     Female 67.1 67.3 68.2 51+ 
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Race/Ethnicity     
     White 73.9 72.5 76.6 75+ 
     Black 10.3 10.5 9.9 14+ 
     Hispanic 6.7 7.5 5.1 19+ 
     Asian 5.5 5.5 5.6 7+ 
     Other 3.6 4.0 2.7 4.3+ 
Religion     
     Christian 72.9 69.0 94.1 71* 
     Nonreligious 21.0 24.2 4.6 22* 
     Jewish 1.5 1.6 .4 2* 
     Muslim 1.0 1.2 .2 .9* 

 
     Buddhist 1.2 1.4 .3 .7* 
     Hindu .5 .5 .09 .7* 
Party     
     Democratic 35.8 35.6 37.4 31G1 

     Republican 29.2 27.9 31.3 31G1 
     Independent 29.1 29.6 27.8 36G1 
     Other 5.5 6.4 3.3 NA 
Ideology     
     Liberal 31.8 33.1 30.5 24G2 
     Moderate 36.7 37.1 36.1 35G2  
     Conservative 30.4 28.6 32.9 37G2 

N 272,092 190,508 39,997  

Standard errors were 2% or less. The Race/Ethnicity item is unconventional as it was taken 
from PureSpectrum who provided it exclusively, meaning participants could be Hispanic, Black, 
White, Asian, or Other but could not be multiple.  
+Based on 2019 American Community Survey estimates 
*Based on the Pew Religious Landscape study (Pew Research Center 2014)  
G1 Based on Gallup Party Affiliation (Gallup 2021) 
G2 Based on Gallup’s 2019 Report (Saad 2020) 

 
Overall, we substantially undersampled several demographic groups - those with less than a 
high school degree (3% compared to 10%), those with only a high school degree (22% to 28%), 
those with incomes over $100,000 per year (22% to 34%), those who identify as conservative 
(30 to 37%) and men (33% to 49%). Our measure of race and ethnicity is unconventional. This 
item was collected by PureSpectrum  who asked participants to choose one and included 
hispanic as one of the choices. Thus, our statistics are not directly comparable to the Census 
which allows participants to select multiple races and asks about hispanic ethnicity separately 
(hence the Census statistics add up to more than 100%).   
 Next we address panel bias. While Covid States is not a panel survey, some participants 
did participate in multiple waves providing more data than others. Overall, there was relatively 
little repeat participation: 91% of all participants participated once (79.0%) or twice (12%). Only 
5,605 people (2.9%) participated in five or more waves. If we compare every individual who 
participated to those who participated more than once, we can identify the panel bias - the types 
of people who are more likely to contribute their data again and again. We find older participants 

https://www.zotero.org/google-docs/?ycn1QF
https://www.zotero.org/google-docs/?CwCNmy
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and those who identify as Christian were substantially more likely to participate multiple times. 
Overall, panel effects should be limited given 1) the relatively small number of participants who 
participated multiple times and 2) the small demographic differences in who participated multiple 
times.  

 
Table 3: Percent of Participants with Trimmed Weights by Demographic Group 

 Pct Trimmed (National) Pct Trimmed (State) 

Age   
     18-24 0.3 <0.1 

     25-34 0.9 <0.1 
     35-44 0.5 <0.1 
     45-55 1.1 0.1 
     55-65 0.9 <0.1 
     65+ 1.4 0.1 
Income   
     < $25,000 1.5 .01 
     $25 - $49,999 1.0 0.1 
     $50 - $74,999 0.7 0.1 
     $75 - $99,999 0.5 <0.1 
     > $100k 0.3 <0.1 
Education   
     Less than HS 18.4 0.1 
     HS Grad 0.8 0.1 
     Some College 0.3 <0.1 
     Bachelor Degree 0.2 <0.1 
     Graduate Degree 0.1 <0.1 
Gender   
     Male 1.9 0.1 
     Female 0.4 <0.1 
Race/Ethnicity   
     White 0.4 <0.1 
     Black 1.4 0.1 
     Hispanic 6.0 0.3 
     Asian 0.9 <0.1 
     Other 0.2 0.2 
Religion   
     Christian 0.9 <0.1 
     Muslim 0.7 0.1 
     Buddhist 0.8 0.0 
     Nonreligious 0.8 <0.1 
     Hindu 0.9 0.0 
     Jewish 0.4 0.0 
Party   
     Democratic 1.0 0.1 
     Republican 0.6 <0.1 
     Independent 0.9 0.1 
     Other 1.1 0.1 
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Ideology   
     Liberal 0.9 <0.1 
     Moderate 1.0 <0.1 
     Conservative 0.8 <0.1 

 

Survey Weights 
For the national weights, we trimmed the weights for 4,678 surveys (1.8% of all 

responses) resulting in a trimmed range from .12 to 7.6. For the state weights, we trimmed the 
weights for 1,910 surveys (.7% of all responses) resulting in a range from .22 to 3.3. To explore 
the impact of our weighting schema and our trimming rules, we examine the percent of each 
demographic group who had their weights trimmed for being too large (see Table 3).  

First, there were no demographic groups whose weights were trimmed at the state level. 
In general, the proportion of the sample with trimmed weights was always larger for the national 
weights than the state weights. This was due to two things. First, our sampling frame was 
representative at the state-level rather than the national level. Second, there were more weights 
created for the national data and some were interlocked. For example, white women under 25 
had a different weight than black women under 25.  

Second, sample size did not necessarily correspond to the propensity for groups to have 
their weights trimmed. Some groups, like religious minorities, are small in our sample and in the 
population. Moreover, even though we examine the impact of weighting on all of our 
demographic groups, we only reweighted on a subset of characteristics. In this case, we see 
larger trims for the groups we actually weighted based on. We do not see any spillover into 
demographic categories that were not weighted like political party or ideology.  

Overall, demographic groups had few members with trimmed weights with two 
exceptions. First, a large proportion of people with less than a high school education (18%) had 
weights that were trimmed. Second, a sizable minority of hispanics (6%) had their weights 
trimmed. Taken together, 50% of hispanics with less than a high school education (397 out of 
802) had weights that were so large they had to be trimmed. Thus, we should be careful in 
generalizing national-level estimates to this subpopulation.  

Public Health Comparisons 

In this section we evaluate how closely the COVID States survey follows other measures of 
public health phenomena. We focus on measuring the prevalence of COVID-19 and vaccination 
rates as compared to official state data. Then we compare our estimates of people’s attitudes, 
behaviors, and mental health experience to results from other surveys. In some cases, we 
approximate or improve on these baselines and, where we diverge, it largely comes from 
differences in the way we pose our question as compared to how other survey groups pose their 
questions. 

COVID-19 Prevalence 

True prevalence of SARS-CoV-2 in the U.S. has been difficult to measure, even for public 
health agencies. Many epidemiologists believe true prevalence has been widely underreported, 
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particularly early in the pandemic when tests were in short supply (Irons and Raftery 2021; 
Kalish et al. 2021; Lu et al. 2021). While both public health agencies are likely to miss 
asymptomatic or mild infection cases, surveys have the added risk of overestimating rates of 
symptomatic infection, since, in the absence of access to testing or medical professionals, 
respondents may misattribute to SARS-CoV-2 the symptoms of other illnesses. We attempt to 
avoid such overreporting by asking specifically “Have you been diagnosed with coronavirus 
(COVID-19)?” and coding as positive only those who respond “Yes, I was diagnosed by a 
medical professional” (other options include “No, I was not diagnosed but I think I may have it 
now” as well as a definite “no” or unsure). That said, some patients may have been told by 
medical professionals over the phone or at hospital waiting rooms to presume they were 
positive if they were showing symptoms rather than coming in for a test and risking exposing 
others.  Thus, we should not be surprised if our estimates are systematically higher than case 
counts compiled by the CDC from state and local health agencies. 

 

Figure 1: CDC and COVID States Estimates of COVID-19 Infections 
 
As shown in Figure 1, our estimates, though systematically higher, consistently track with case 
rates reported by the CDC (CDC Case Surveillance Task Force 2021). Our reported cumulative 
infection rate never decreases. With the exception of the penultimate wave, our estimates range 
from 0.7 to 2.2 percentage points higher than that of the CDC, which is consistent with the 
theory that symptomatic cases not reported to public health agencies were widespread in the 
first few months of the pandemic (prior to the start of our survey) but have not accumulated 
since.  

This is further shown when examining responses to our question about COVID testing 
among respondents who did or did not report having been diagnosed with COVID-19 by a 
medical professional (Figure 2). During the early stages of the pandemic, we observe high rates 
of respondents reporting having been diagnosed with COVID-19 by a medical professional but 

https://www.zotero.org/google-docs/?Zel7iD
https://www.zotero.org/google-docs/?Zel7iD
https://www.zotero.org/google-docs/?cXnNwa
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not having received a positive test. Over time, testing status and diagnosis status increasingly 
align, consistent with expanded testing capacity. 

 

Figure 2: COVID States Testing and Test Positivity Rates 
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Figure 3: Error in state-level comparisons between CDC and Covid States survey 

Figure 3 demonstrates the discrepancies between our survey’s COVID-19 cumulative incidence 
rates and those reported by the CDC in each of the 50 states plus the District of Columbia. In 
general, our survey appears to nearly always match the CDC’s case rate in a given state to 
within 5 percentage points in any given wave. While the typical state’s error has not 
substantially changed over time (rising only marginally in waves 7–13 before falling again), our 
estimate of cumulative infection rates increasingly converged with the CDC as rates increased 
over time.  For CDC case rates higher than 4%, approximately three-quarters of states-wave 
observations fall within a 95% margin of error.10 As indicated by the shading, a state’s 
underlying population is not strongly associated with the accuracy of our predictions. Note that 
our systematic overestimation may also be due in part to the fact that it is impossible to obtain 

 
10 This number rises steadily for cutoffs lower than 4.0, then fluctuates between 75% and 80%. Note that 
the standard error formula yields an ever-widening margin of error as the underlying proportion being 
estimated approaches 0.5. Thus, our survey is not necessarily more accurate for higher rates or later 
waves; rather the 95% margin of error grows more accommodating. 
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an estimate lower than 0% (and hence an error greater than the CDC case rate itself, as 
indicated by the black diagonal in each panel).  

In sum, our survey captures the upward trend in cumulative COVID-19 cases both on 
the state and national level and gradually converges to the CDC estimate over time. While we 
generally overestimate the CDC’s reported case rate, we know the CDC data are an undercount 
of diagnoses of “presumed” COVID-19, the information on which patients are told to act 
regardless of its clinical accuracy. At the state-level, once the CDC’s estimated case rate rises 
above 4% in a given state, we are able to predict it within two standard errors three-quarters of 
the time, regardless of its underlying population. 

Vaccination Rate 

Starting in Wave 14, we asked participants “Have you or anyone you know received a COVID-
19 vaccine?” We produced national estimates based on those who selected “I was vaccinated 
for COVID-19.” In Figure 4, we plot these estimates against records gathered by the Centers for 
Disease Control (Centers for Disease Control and Prevention 2021). Our estimates capture the 
overall S-curve trend in vaccination rates over the first half of 2021 and fall within 3 percentage 
points of the CDC’s rates each time. Since our survey waves each last approximately four 
weeks, we plot our estimates at the weighted median date—the date when the middle-most 
respondent took the survey after reweighting on demographics. Furthermore, the CDC’s 
reporting is also uneven and subject to change, since it depends on state and local health 
departments which sometimes submit backlogged or duplicated data (Associated Press 2021; 
Wingrove 2021)

Figure 4: CDC and COVID States Vaccination Rates 

https://www.zotero.org/google-docs/?sIeegQ
https://www.zotero.org/google-docs/?PgMnUv
https://www.zotero.org/google-docs/?PgMnUv
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Public Health Attitudes 
Our survey regularly monitored general attitudes regarding the COVID-19 pandemic, including 
people’s support for specific public policies and attitudes about the vaccine. One public health 
attitude question we asked was a battery adapted from a question Pew asked their American 
Trends Panel in mid-March of 2020 regarding how different people and institutions were 
reacting to the outbreak -- whether they were overreacting, reacting about right, or not taking the 
outbreak seriously enough (Pew Research Center 2020b).  
 

 
Figure 5: Comparing Covid States and Pew Measures of the Public Reaction to the 
Pandemic 
 
We see general agreement between our results and theirs particularly on the question of how 
the respondent’s state government was reacting. We see large shifts in perceptions of how 
ordinary people were responding. In our data, respondents generally felt more like others were 
not taking the outbreak seriously enough. However, these make sense given the timing of our 
survey. The Pew survey was fielded just as the first wave of the pandemic began. Ours was 
fielded three weeks later as the first wave of the pandemic had spread around the country. 
Unfortunately, this question was not asked again, so we cannot compare our measures over 
time. 

Approval of COVID-19 restrictions 
The second set of attitude questions we asked revolved around participants’ support of COVID-
19 restrictions like mask wearing, avoiding large gatherings, and staying home. In our survey, 
we ask: “Do you approve or disapprove of the following measures which federal, state, and local 

https://www.zotero.org/google-docs/?qRw6VO
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governments could take to prevent the spread of coronavirus (COVID-19) in the next 30 days?”. 
The possible answers are “Somewhat approve”, “Strongly approve”, “Somewhat disapprove” 
and “Strongly disapprove.” While three polls asked questions about these attitudes, the question 
wording, option choices, and timing varied substantially among them (see Table 4).  

In general, our participants were more supportive of restrictions. However, there were 
systematic differences in how we posed the questions. AP-NORC allowed participants to 
provide a neutral opinion (“neither favor nor oppose”). While 9-14 percent more of our 
respondents approved of restrictions compared to AP-NORC, only 2-3 percent less of our 
respondents disapproved of restrictions. This means that the neutral category cannot account 
for all the difference but that it likely accounts for much of it. In the one case where we see the 
same question asked in multiple waves by the same survey (the restrictions on U.S. travel), 
both surveys document the same changes in attitudes as fewer people are strong supporters 
and more disapprove of restrictions from May 2020 to June 2020.   

The largest differences in our measures comes from differences in question and option 
framing. For example, the NPR/PBS/Marist poll in December 2020 asked if a national stay-at-
home-order was a good idea or not while we asked if people approved of governments “asking 
people to stay home”. While 84.9% of our participants approved, only 51% thought a stay at 
home order was a good idea. We believe this captures a substantive difference in public opinion 
rather than any measurement error. 
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Table 4. Comparing Public Approval of Covid Restrictions across Surveys 

Topic 
Covid States 
Question 

Covid 
states 
Date Covid States results 

Other survey 
Question Source 

Other 
Date Results 

Travel 
Restrictions 

Restricting 
international 
travel to the 
U.S. 

4/16 - 
4/30/20 

Somewhat approve + 
Strongly approve, 94.6%, 
Strongly disapprove + 
Somewhat disapprove 
5.4% 

Restricting 
international travel to 
the U.S. 

(Pew 
Research 
Center 2020c) 

3/19 - 
3/24/20 

Necessary: 95%, 
Unnecessary: 5% 

Restricting 
travel within 
the U.S. 

5/16 - 
6/1/20 

Strongly approve 43.8%,  
Somewhat approve 32.8% 
Somewhat disapprove 
15.3%  
Strongly disapprove 8.1% 

Restricting travel 
within the U.S. 

(AP-NORC 
2020d) 

5/14 - 
5/18/20 

Strongly favor: 37%, 
Somewhat favor: 27%, 
Neither favor nor oppose: 
15%, 
Somewhat/Strongly oppose: 
20% 

6/12/ 
6/28/20 

Strongly approve 40.1%, 
Somewhat approve 35.1%, 
Somewhat disapprove 
16.2%, 
Strongly disapprove 8.6% 

Restricting travel 
within the U.S. 

(AP-NORC 
2020b) 

6/11 - 
6/15/20 

Strongly favor: 20%, 
Somewhat favor: 31%, 
Neither favor nor oppose: 
19%, 
Somewhat/Strongly oppose: 
29% 

Mask 
Mandate 

Requiring 
people to 
wear masks 
when in 
public 12/16/20 - 

1/11/21 

Strongly approve 70.8% , 
Somewhat approve 15.9%, 
Somewhat disapprove 
6.4%, 
Strongly disapprove 6.9% 

Requiring Americans 
to wear face masks 
when they’re around 
other people outside 
of their homes (AP-NORC 

2020a) 
12/3 - 
12/7/20 

Strongly favor: 59 
Somewhat favor: 14 
Neither favor nor oppose: 12 
Somewhat oppose: 8 
Strongly oppose: 8 

https://www.zotero.org/google-docs/?rUyH1L
https://www.zotero.org/google-docs/?rUyH1L
https://www.zotero.org/google-docs/?rUyH1L
https://www.zotero.org/google-docs/?wDeYlg
https://www.zotero.org/google-docs/?wDeYlg
https://www.zotero.org/google-docs/?4z2eBR
https://www.zotero.org/google-docs/?4z2eBR
https://www.zotero.org/google-docs/?nGdHYo
https://www.zotero.org/google-docs/?nGdHYo
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Mask 
Mandate 

2/5/21 - 
2/28/21 

Strongly approve 70.1% 
Somewhat approve 16.1% 
Somewhat disapprove 
6.5% 
Strongly disapprove 7.2% 

(AP-NORC 
2021) 

2/25 to 
3/1/21 

Strongly favor: 54 
Somewhat favor: 15 
Neither favor nor oppose: 14 
Somewhat oppose: 8 
Strongly oppose: 8 

Social 
Distancing 

Asking 
people to 
stay at home 
and avoid 
gathering in 
groups 

12/16/20 - 
1/11/21 

Strongly approve 59.3% 
Somewhat approve 25.6% 
Somewhat disapprove 
8.9% 
Strongly disapprove 6.2% 

Due to coronavirus, 
do you think a 
national stay-at-home 
order, if 
recommended by 
public health officials, 
is a good idea or a 
bad idea? 

(NPR/PBS 
NewsHour/
Marist 2020) 

12/1 to 
12/6/20 

Good Idea: 51%,  
Bad Idea: 45%,  
Unsure: 4% 

Business 
closures 

Requiring 
most 
businesses 
other than 
grocery 
stores and 
pharmacies 
to close 

4/16/ - 
4/30/20 

Strongly approve 51.3% 
Somewhat approve 31.3% 
Somewhat disapprove 
12.1% 
Strongly disapprove 5.2% 

Requiring most 
businesses other 
than grocery stores 
and pharmacies to 
close 

(Pew 
Research 
Center 2020c) 

3/19 to 
3/24/20 

Necessary: 71%, 
Unnecessary: 28%, No 
Answer: 1% 

Canceling 
Events 

Canceling 
major sports 
and 
entertainment 
events 

4/16/ - 
4/30/20 

Strongly approve 74.7% 
Somewhat approve 17.3% 
Somewhat disapprove 
5.5% 
Strongly disapprove 2.5% 

Canceling major 
sports and 
entertainment events 

(Pew 
Research 
Center 2020c) 

3/19 to 
3/24/20 

Necessary: 91%, 
Unnecessary: 9%, No 
Answer: 0% 

https://www.zotero.org/google-docs/?Ifgpqj
https://www.zotero.org/google-docs/?Ifgpqj
https://www.zotero.org/google-docs/?sVZWah
https://www.zotero.org/google-docs/?sVZWah
https://www.zotero.org/google-docs/?sVZWah
https://www.zotero.org/google-docs/?qaIKb5
https://www.zotero.org/google-docs/?qaIKb5
https://www.zotero.org/google-docs/?qaIKb5
https://www.zotero.org/google-docs/?Ms6qkz
https://www.zotero.org/google-docs/?Ms6qkz
https://www.zotero.org/google-docs/?Ms6qkz
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Closing 
Schools 

Closing K-12 
schools 

4/16 - 
4/30/20 

Strongly approve 71.8% 
Somewhat approve 19.8% 
Somewhat disapprove 
5.4% 
Strongly disapprove 2.9% 

Closing K-12 schools 

(Pew 
Research 
Center 2020c) 

3/19 to 
3/24/20 

Necessary: 90%, 
Unnecessary: 10%, No 
Answer: 0% 

Closing Schools 
(AP-NORC 
2020c) 

3/26 - 
3/29/20 

Strongly Favor: 58%, 
Somewhat Favor: 25%, 
Neither Favor Nor Oppose: 
10%, 
Somewhat Oppose: 3%, 
Strongly Oppose: 3% 

Note: These survey results were found via the Societal Experts Action Network (SEAN) COVID-19 Survey Archive at https://covid-
19.parc.us.com/client/index.html#/ 

https://www.zotero.org/google-docs/?XqcpqP
https://www.zotero.org/google-docs/?XqcpqP
https://www.zotero.org/google-docs/?XqcpqP
https://www.zotero.org/google-docs/?b5jWOe
https://www.zotero.org/google-docs/?b5jWOe
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Compliance with policies 

Through our different survey waves, we asked a battery of questions on compliance with health 
recommendations related to COVID-19 prevention. The battery starts with the question: “In the 
last week, how closely did you personally follow the health recommendations listed below?” and 
then lists a series of behaviors. The possible answers are “Very closely”, “Somewhat closely”, 
“Not very closely” and “Not at all closely”. Among the behaviors we ask for, we found similar 
questions in other surveys for “Avoiding public or crowded places” and “Avoiding contact with 
other people”.  

The Understanding America Study (UAS)11, a panel of households at the University of 
Southern California (USC) representing the United States has been asking the following 
question since July 2020: “Which of the following have you done in the last seven days to keep 
yourself safe from coronavirus? Avoided public spaces, gatherings, or crowds”. The possible 
answers are “Yes”, “No”, and “Unsure”. Similarly, the Axios-Ipsos polls (Ipsos 2020, 2021) on 
COVID-19 have been asking the following question: “Have you done the following in the last 
week? Social distanced – that is stayed at home and avoided others as much as possible” using 
the Ipsos Knowledge panel, since April 2020. The possible answers are “Yes” or “No”. 

While these questions match our questions well, the possible answers do not, so we 
compared the percentage answering “Very closely” or “Somewhat closely” in our surveys to the 
percentage answering “Yes” in the UAS and Axios-Ipsos surveys. Figure 6 shows the result of 
this comparison. We consistently overestimate the percentage of positive answers, however, 
the mismatch between the question answers could partially explain these differences. In 
addition, the trends for both surveys are similar. In Figure 7, we compare the difference in 
percentage of positive answers from one wave to the next wave of our survey, with this 
difference for the waves of the UAS and Axios-Ipsos polls that are closer to each of our waves. 
We compare relative differences, that is, we divide them by the standard deviation of the 
differences corresponding to a given question and survey. In general, these relative differences 
are small and in the same direction. In other words, the periods during which our estimates 
decline and increase correspond to similar periods for the UAS and Axios-Ipsos polls, and, in 
relative terms, the differences are of the same order.  

 
11 Data available at https://uasdata.usc.edu/index.php. The Understanding America Study is maintained 
by the Center for Economic and Social Research (CESR) at the University of Southern California. The 
content of this paper is solely the responsibility of the authors and does not necessarily represent the 
official views of USC or UAS. The collection of the UAS COVID-19 tracking data is supported in part by 
the Bill & Melinda Gates Foundation and by grant U01AG054580 from the National Institute on Aging, 
and many others. 

https://www.zotero.org/google-docs/?uXcz1R
https://uasdata.usc.edu/index.php
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Mental Health Indicators 

Beyond its direct public health effects, COVID-19 has also generated a considerable degree of 
stress and social isolation in the U.S. public. This has led to concerns regarding mental as well 
as respiratory health. Our survey periodically includes the Patient Health Questionnaire-9 (PHQ-
9) for either all respondents or a random subset, so as to monitor both the prevalence and 
correlates of depressive symptoms. 

Here, we compare our national estimates of minor depressive symptoms to the Census 
Household Pulse survey, which is the only analogous nationally representative survey to include 
questions from this battery. The Pulse survey asks the short-form PHQ-4, which contains two 
items related to depression and two related to anxiety: “Little interest or pleasure in doing 
things” and “Feeling down, depressed, or hopeless.” Following convention in the literature 
(Kroenke et al. 2009), we code responses to these two items on a 0-3 scale and define 

https://www.zotero.org/google-docs/?ivSESS
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respondents as exhibiting minor depressive symptoms if the sum of these two responses is 
greater than or equal to 3.  

Figure 8 plots the means and 95% uncertainty intervals from each wave of each survey 
that showed these two items to respondents, representing the final date of the relevant survey 
wave on the x-axis. As the figure shows, the estimated prevalence of minor depression does not 
perfectly match between surveys, but is typically close and for the most part exhibits similar time 
trends. The biggest topline deviations tend to be in the summer of 2020, where a smaller 
number of COVID States respondents were shown the items and there is more uncertainty. 
However, all estimates in both surveys fall within an eight percentage point window throughout 
the entire period. In general, the time trends in the COVID States survey indicate more stability 
as well, though estimates in both surveys tend to increase in October and December of 2020 
and decrease in the early months of 2021. 

 

 

Figure 8: Incidence of Depression between Covid States and Census Household Pulse 
Survey 

Generally speaking, we take this as encouraging evidence that our survey is picking up a similar 
signal as that picked up in the Census Household Pulse survey. Both surveys’ estimates are 
nearly always within a close range, only once deviating by more than five percentage points 
(which was itself the most uncertain estimate in the COVID States data) and typically exhibiting 
similar wave-over-wave trends.  

Political comparisons 

In this section, we evaluate how well the COVID States survey aligns with other measures of 
political behavior, attitudes, and outcomes. First, we focus on the election in 2020, comparing 
our state-level estimates of vote share to others. Second, we compare our estimates of 
participation in political activities with a particular focus on participation in protests in response 
to racism and police violence during the summer of 2020. Finally we examine political attitudes 
comparing our feeling thermometer questions to those posed by the ANES.  
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State-by-State Comparison with 2020 election polls 

No public opinion matter is polled as closely as a presidential election. Hence, these polls make 
for a perfect reference to gauge potential biases in our survey procedures compared with the 
state of the art of survey methodology.  

For this comparison, we used the polls listed at FiveThirtyEight, a polling aggregator and 
forecaster. We extracted the results of all 2020 presidential elections polls since the start of our 
first survey, April 16th 2020. For this comparison, we removed polls from a pollster with ratings 
of C/D or worse, and those without a pollster rating12. For the comparison, the remaining polls’ 
percentage of vote for Biden and Trump was averaged. No polls following this criteria were 
found for Wyoming and Rhode Island, so we excluded these states from the comparison. In 
addition, the only polls available for Nebraska were for congressional districts only, so we also 
excluded this state.  

To calculate the vote intention from our survey, we pooled the data from our 9 pre-
election state waves, keeping only the most recent answer from respondents appearing in more 
than one wave. We then reweighted the data using the same weighting procedure as described 
before. Then, we calculated the percentage of respondents who would vote for Trump or Biden 
over the number of respondents stating they are registered to vote and intending to vote or 
unsure about it. This filtering left a total of 91,908 respondents over the total of 124,558 
respondents in the aggregated dataset, averaging 1802 respondents per state.  

A large subsample of respondents, 10.5% of the sample at the national level, reported 
being unsure of whom they would vote for. As a result, the total intention to vote for either 
Trump or Biden is significantly lower in our survey than in election polls. Hence, our estimates of 
vote for both Biden and Trump are lower for all states than the estimates from the 
FiveThirtyEight polls. To solve this issue, we compared the percentage of vote for Biden 
calculated over the percentage of vote for either Biden or Trump, what we call normalized Biden 
vote. The result of this comparison is shown in Figure 9.    

Overall, the values obtained from our survey line up well with the election polls, both in 
terms of absolute deviation from the election polls average and in terms of a consistent direction 
for the deviations. The absolute difference is higher than 5% for only three states: West Virginia, 
New Hampshire and Maine which have fewer respondents than the average state in our 
aggregated sample. In addition, the West Virginia average from the FiveThirtyEight polls is 
based on a single poll. The median absolute difference is 1.8%, and for 31 of the 47 states 
considered the absolute difference is below 2.5%. As a point of comparison, we calculated the 
standard deviation of the percentage of vote for Biden (over total vote) for the different polls of 
each state. The median standard deviation of these values is 2.3, and for Maine and New 
Hampshire it is 2.4 and 3.6, respectively. Hence, the intention to vote from our survey deviates 
from the average of election specialized polls for normalized Biden vote similarly to how 
percentage of Biden vote for these polls deviates from their average. In addition, the states for 
which our survey lines up worse are states for which election polls had an above average 
standard deviation.  

 
12 Fivethirtyeight.com rates pollsters on a scale from A to D mainly based on the accuracy of their past 
predictions (see https://projects.fivethirtyeight.com/pollster-ratings/). They regularly update their ratings 
and we used ratings as they were on election day.  
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Political Participation 

To measure political participation, we adapted the American National Election Survey’s (ANES) 
Political Participation questionnaire. We asked about participation in the past six months rather 
than the past 12 months and changed some of the questions slightly. We began asking these 
questions starting in Wave 10, September 2020. In Table 5, we compare our pooled responses 
from September through November 4th. We see similar magnitudes in political participation for 
similar questions - volunteering, attending meetings, contacting representatives, and 
contributing money. We see larger differences in rates of posting comments online (14 points) 
and making a donation (6 points different). These differences may be due to question wording 
and difference in 12 vs 6 month timing. Our questions about attending events are likely 
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incomparable given their different wording. Given the substantial differences in our question 
wording, these comparisons do not provide the apples-to-apples comparisons we would like. 
But they do offer insight into the areas of agreement and disagreement with existing gold-
standard data sources. We have better comparisons with a more targeted question: estimating 
protest participation in the summer of 2020. 
 

Table 5: Comparing Political Participation between the ANES and COVID States  

ANES Item 2020 
Result 

COVID States Item Pooled Result 
Sept-Nov 2020 

Contacted member of US 
Senate or House of Rep 

14.1% Called or wrote to an 
elected official 

11.4% 

Posted comment online about 
political issue 

37.4% Posted about politics on 
social media 

22.7% 

Contribute money to individual 
candidate running for public 
office 

16.6% Made a donation to a 
candidate, party, or other 
political organization 

10.8% 

Do any (other) work for party or 
candidate 

2.9% Volunteered for a 
candidate, political party, or 
other political organization 

5.1% 

Go to any political meetings, 
rallies, speeches, dinners 

5.3% Attended a rally or protest 7.0% 

Attend online political meetings, 
rallies, speeches, fundraisers 

11.7% Attended a town hall held 
by an elected official 

3.6% 

 
 We also measured political participation in protests that arose during the summer of 
2020. For our June 12-28 wave (Wave 5) we asked participants “When, if ever, did you last 
attend a rally, protest, or vigil about racism and/or police violence?” with the possible responses 
“In the past month” “More than a month but less than a year ago” “More than a year ago” and 
“Never.” Based on these responses, we estimated that 4.6% (±0.32) of adults attended a protest 
about “racism and/or police violence” over the past 30 days. Pew’s American Trends Panel’s 
June 4-10 survey reported 6% (±1.6) “in the last month” (Pew Research Center 2020a). 
NORC’s June 11-14 survey (2020), which asked about protest attendance in “the past few 
weeks,” estimated turnout at 7% (±3.7). Thus, our estimate falls within Pew and NORC’s 
margins of error.  Two other pollsters found slightly higher turnout rates. Civis Analytics (2020) 
over two waves (June 12-25) found 8.6% participation “in the last four weeks,”13 while the 

 
13 No margin of error was reported, but their sample size of 4446 implies an unweighted margin of error of 
±0.82. 

https://www.zotero.org/google-docs/?fdxq7F
https://www.zotero.org/google-docs/?SJJnMo
https://www.zotero.org/google-docs/?zZE3TU
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Kaiser Family Foundation (2020) (June 8-14) reported 9% (±3) of the population attended “in 
the past three months.”14  

We also examined the correlates of protest participation (Table 6). Like Civis, we found 
slightly higher rates of protest participation from men than women (1.5 points in ours, 0.8 points 
in Civis). Pew, NORC, Civis, and our survey all find that Blacks had about twice the likelihood of 
participating as Whites (7.4:3.8 in our survey, 10:5 in Pew, 13:6 in NORC, and 16:7 in Civis).15 
We estimate decreasing rates of protest participation in each older age bracket. We find less 
participation for Republicans and those approving of President Trump than do Pew and Civis 
(NORC and Kaiser don’t report these breakdowns). Both Civis and our survey found the 
probability of attendance to 1) increase with education and income; 2) be roughly twice as high 
for adults living with children under 18 than those without; 3) higher for single than married 
individuals, who are in turn higher than divorcees, and 3) higher in the Northeast with similar 
rates across the Midwest, West, and South. (Other surveys did not report these correlations). 
Kaiser and Pew also report the composition of protesters themselves, broken down by age, 
education, party, race, and urbanicity. While their estimates tend to diverge widely, our 
estimates usually fall in between the two and generally agree ordinarily if not cardinally. 

 

Table 6: Comparing Protest Composition Estimates between COVID States, Kaiser, and 
Pew 

Demographic COVID States Kaiser+ Pew++ 

High school or less 26.6 [23.0, 30.1] 28 n/a 

Some college 28.8 [25.6, 32] 20 n/a 

College 44.6 [41.2, 48.0] 53 n/a 

Democrat 50.8  [47.3, 54.4]  42 n/a 

Democrats/Lean D 62.2   [58.7   65.6] n/a 79 

Republican 16.0 [13.4, 18.5] 6 n/a 

Republican/Lean R 20.0   [17.2   22.8] n/a 17 

Independent 27.3 [24.0, 30.5] 46 n/a 

Ages 18-29 46.3 [42.8,   49.8] 52 41 

Ages 30-49 40.7 [37.3,   44.2] 33 38 

Ages 50+ 13.0 [10.3,   15.7] 11 21 

 
14 We also asked participants “When, if ever, did you last attend a rally, protest, or vigil about reopening, 
quarantine, or coronavirus restrictions?” We estimate 0.6% of the population attended a protest about 
quarantine, on par with the 1% reported by Kaiser. 
15 Kaiser reports a smaller ratio of 13:10, but their margin of error for Blacks is ±9.  

https://www.zotero.org/google-docs/?XVfQss
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Urban 41.4   [37.8   44.9] n/a 41 

Suburban 48.8   [45.2   52.3] n/a 42 

Rural 9.8    [8   11.7] n/a 17 

White 53.2   [49.7   56.8] n/a 46 

Black 19.5   [16.8   22.1] n/a 17 

Hispanic 17.7   [14.3   21.2] n/a 22 

Asian 5.5   [4.3   6.7] n/a 8 

+ From Kaiser Family Foundation 2020 
++ From (Pew Research Center 2020a) 

Feeling Thermometer 

Our survey included a battery of “feeling thermometer” items, asking respondents to rate various 
individuals, groups, and institutions on a 0-100 scale. These items are common in survey 
research, especially in political surveys. Here, we compare six such items that overlap with 
those asked on the American National Election Studies (ANES) 2020 post-election wave -- both 
in date range and question wording. The ANES is widely considered the gold-standard for 
regular, publicly-available survey research in American Politics. As feeling thermometer items 
are particularly prone to mode effects (Homola, Jackson, and Gill 2016), we consider the 
ANES’s online-only sample for an apples-to-apples comparison. 

In Figure 10, we see general agreement between the feeling thermometer ratings in our 
survey and those in the ANES, including when responses are broken out by respondents’ 
seven-point partisan identification. While there are cases where base rates differ (most notably, 
feelings toward racial groups tend to be slightly higher in the COVID States survey than in the 
ANES), partisan trends in feeling thermometer ratings are consistent across surveys. 
Democrats holding warmer views toward scientists, Black people, and Hispanic people and 
Republicans holding warmer views toward white people and the police. 

https://www.zotero.org/google-docs/?b0ESqB
https://www.zotero.org/google-docs/?PLbVhb
https://www.zotero.org/google-docs/?Tx1GcL
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Figure 10: Comparison of Feeling Thermometer between COVID States and 2020 ANES 

Summary 
Our measures of political attitudes, beliefs, and behaviors fit well with prevailing standards. Our 
polls matched other polls in predicting Biden vote share at the state level. While our measure of 
everyday political activity diverged somewhat from the ANES due to item construction issues, 
our estimate of participation in racial justice and anti-pandemic restriction protests align broadly 
with other studies, both in point estimates and in correlations with who was likely to attend. 
Finally, our measure of sentiment towards others closely tracked that measured by the ANES.  

Direct Comparison to Kaiser Family Foundation’s CVM Poll 

Thus far, we have compared our results to surveys asking similar questions around the same 
time. This raises questions about the temporal validity of our results and noise from variations in 
question prompt and response choices. That’s why, in September 2021, we conducted an 
assessment of the consistency of our data relative to the data collected by the Kaiser Family 
Foundation’s (KFF) COVID-19 Vaccine Monitor (CVM) (Kaiser Family Foundation 2021). We 
fielded a set of shared questions during overlapping time periods to provide a validation on 
more comparable data. We compare our poll results across a range of responses and across 
demographic subgroups. 

KFF’s CVM is a source of probability, public health polling data widely considered to be 
the “gold standard” in public opinion research. The experiment asked several identical questions 
as KFF’s September CVM, including questions on whether the respondent is vaccinated, 
whether they feel getting vaccinated is mostly a personal choice or everyone’s responsibility to 
protect the health of others, and items asking support for employer, college, and K-12 schools 

https://www.zotero.org/google-docs/?zcPVcU
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vaccine mandates. To assess the consistency of COVID States’ results with KFF’s results, we 
first subsetted our data to include only respondents who completed the survey during the time 
period in which KFF’s September CVM was in the field (September 13-22, 2021), yielding a 
sample size of 5,233 respondents. We then weighted our data using demographic 
characteristics to match the U.S. population with respect to race/ethnicity, age, gender, 
education, and living in urban, suburban, or rural areas.  

The results of this study indicated that the COVID States method performs well 
compared to KFF when it comes to self-reported vaccination rates. The overall share of 
respondents already vaccinated for COVID-19 was identical to the share reported by KFF in it’s 
September CVM (72%). The share of individuals vaccinated by gender, age, educational 
attainment, and race were within 5 percentage points of the results reported by KFF in their 
September CVM. As shown in Figures 11 and 12, confidence intervals for COVID States 
estimates of self-reported vaccination rates overall and by demographic subgroups (including 
party, age, education, race, and gender) are within the range of the margin of sampling error 
(MOSE) for the September CVM KFF estimates for all groups.16  
 

 
16 KFF data was downloaded from the Roper Center and demographic groups were recoded to match 
COVID States demographic groups as closely as possible. However, note that the race question is 
notably different between KFF and COVID States.  
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Figure 11. Self-Reported COVID-19 Vaccination Rates Overall, by Party, and Age, COVID 
States versus KFF’s September CVM. 
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Figure 12. Self-Reported COVID-19 Vaccination Rates by Education, Race and Gender, 
COVID States versus KFF’s September CVM. 
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Figure 13. Share of Respondents Who Say Getting Vaccinated is a Personal Choice 
Overall, by Party, and Age, COVID States versus KFF’s September CVM. 
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Figure 14. Share of Respondents Who Say Getting Vaccinated is a Personal Choice by 
Education, Race, and Gender, COVID States versus KFF’s September CVM. 
 
Unlike the roughly equivalent performance of COVID-19 vaccination rates, significant 
discrepancies exist overall, among Republicans, among 50-64 year olds, high school educated, 
college educated, Whites and men (see figures 13 and 14). Among all these groups, COVID 
States finds a significantly lower share of respondents reporting that getting vaccinated is a 
personal choice relative to KFF’s CVM. Given the highly partisan nature of the question, we 
suspect that our survey underestimates the share of ideological conservatives across these 
groups relative to KFF’s sample.  
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Figure 15. Share of Respondents Who Support Employer Vaccine Requirements Overall, 
by Party, and Age, COVID States versus KFF’s September CVM. 
 
Similarly, as shown in Figures 15 and 16, we observe significant differences overall and across 
subgroups so respondents in support for employer vaccination requirements. Across all groups, 
COVID States finds significantly higher shares of respondents supporting employers requiring 
employees to get vaccinated. The only overlapping estimates are among Black and Hispanic 
respondents.  
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Figure 16. Share of Respondents Who Support Employer Vaccine Requirements by 
Education, Race, and Gender, COVID States versus KFF’s September CVM. 
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Figure 17. Share of Respondents Who Support College Vaccine Requirements Overall, by 
Party, and Age, COVID States versus KFF’s September CVM. 
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Figure 18. Share of Respondents Who Support College Vaccine Requirements by 
Education, Race, and Gender, COVID States versus KFF’s September CVM. 
 
As shown in Figures 17 and 18, COVID States estimates for support for college vaccine 
requirements are also significantly higher than KFF estimates overall, among independents, 
Republicans, ages 30 and up, those with less than a college education, those with some college 
education or more, Whites, and men. COVID States similarly significantly overestimates 
(relative to KFF) the share of respondents overall who support vaccine requirements in K-12 
schools, as well as among Republicans, 30-64 year olds, college educated, non-college 
educated, Whites, and men. 
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Figure 19. Share of Respondents Who Support K-12 Schools Vaccine Requirements 
Overall, by Party, and Age, COVID States versus KFF’s September CVM. 
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Figure 20. Share of Respondents Who Support K-12 Schools Vaccine Requirements by 
Education, Race, and Gender, COVID States versus KFF’s September CVM. 
 
Taken together, COVID States estimates of vaccination rates are consistent with KFF 
vaccination rates, however COVID States diverges from KFF in terms of attitudes towards 
vaccines and vaccine mandates. Specifically, COVID States finds a significantly higher share of 
respondents support vaccine mandates and a significantly lower share who say that getting 
vaccinated is mostly a personal choice (rather than everyone’s responsibility to protect the 
health of others). This pattern could reflect more liberal leaning respondents relative to KFF’s 
sample. This explanation is partially borne out by the data: 32% of COVID States respondents 
during this period self-identified as liberal and 28% as conservative, compared with 27% liberal 
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and 34% conservative among KFF’s respondents which is closer to other national estimates 
(Saad 2020).  

Discussion 
Overall, estimates from our survey closely track estimates from large scale administrative data 
and probability-based survey data: COVID prevalence, vaccination rates, depressive symptoms, 
and state-level election polls. On these, our estimates diverge between 1 and 7 percentage 
points, with larger differences occurring from less standardized survey items. The results for 
election polls and vaccination rates are particularly important because they provide broad 
validation that estimates from our survey are representative at the state-level. Finally, we see 
similar patterns of change over time and the same correlations between key measures as other 
surveys. This suggests that our data can broadly be used for representative estimates and 
statistical analyses of temporal changes and relationships between measures.  

However we do find some potential sources of bias. First we substantially undersample 
Latinos and people without high school degrees, leading to a potential over-reliance on weights. 
Researchers performing analyses of results driven by these groups should exercise caution. 
Second, we also find some large discrepancies in measuring support for vaccine mandates 
particularly among conservatives and conservative-leaning demographic groups. While our 
under-sampling of conservatives is not large, we do not re-weight our data on ideology. This 
means all of our estimates have this imbalance baked in. As such, estimates from our data 
should take into account the under-representation of ideological conservatives. Moreover, the 
under-representation of certain groups can affect statistical estimates of relationships between 
items. In looking for temporal or statistical relationships then, we encourage analysts to take 
ideology into account when conducting their analysis and interpreting their results.   

Conclusion 
Through bias and error, all surveys, whether based on non-probability or probability samples, 
fail to be representative to one degree or another. The generalizability of a survey can only truly 
be evaluated empirically after it has been conducted. Here we’ve demonstrated what that 
evaluation should involve: 1) auditing the representativeness of the respondents and weights 
applied and 2) comparing its estimates to those from other data sources.  

 Despite substantial efforts by the American Association for Public Opinion Research’s 
Transparency Initiative to develop standards for survey transparency, many surveys are not 
conducted or reported in such a way that their results can be replicated or validated. This makes 
it impossible to know whether any given estimate from that survey may be model-dependent, 
biased, or the result of error. In fact, many pollsters consider their weighting schema to be 
proprietary information, the “secret sauce” that makes their surveys more generalizable. In 
reality, this stance makes it more difficult to assess the value of these polls and understand why 
polls vary from one another or miss systematically, such as when they collectively under-
predicted conservative turnout in two presidential election cycles in the U.S. 
 With the COVID States survey, our goal has been to execute the best survey possible 
and provide the transparency needed for others to assess the generalizability of its estimates. 

https://www.zotero.org/google-docs/?0hcxMZ
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This allows academic and non-academic audiences alike to interpret any results with an 
understanding of the strengths and weaknesses of the underlying sample. As non-probability 
sampling becomes more and more common, we hope these practices become part of the 
standards for survey reporting. Such transparency will enable these surveys to contribute to our 
understanding of the social world in proportion to their epistemic value.    
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